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Periodic permanent waves in an anharmonic chain with 
nearest-neighbour interaction 

T P Valkering 
Department of Applied Physics, Twente University of Technology, PO Box 217, 
Enschede. The Netherlands 

Received 2 February 1978, in final form 7 April 1978 

Abstract. The existence of longitudinal periodic permanent waves in a one-dimensional 
translationally invariant anharmonic chain with nearest-neighbour interaction is 
established by means of variational methods. A general expression for the energy is given 
in terms of the dispersion relation. The interaction potential is not specified in detail. 
Fundamental assumptions are: the potential has a vertical asymptote for small distance 
and a horizontal one for large distance between two neighbouring particles. In the limit 
for high energy the wave looks like an infinite series of 'spikes' with finite amplitude and 
'infinite' velocity. 

1. Introduction 

Consider a one-dimensional infinite chain of unit masses. We assume nearest-neigh- 
bour interaction with a potential V(r ,  - r,,-l), where r, is the coordinate of the nth 
particle with respect to its equilibrium position. 

Periodic permanent wave solutions are known for particular choices for V (Toda 
1975, Leo et a1 1977). In the present paper we discuss the existence of these 
permanent waves for a general potential of the type as shown in figure 1. Essential 
features are the vertical and the horizontal asymptote and the inflection point at 
r = Ao. In particular we are interested in the consequences of the asymptotes for the 
wave and for its dispersion relation. This type of potential is typical for longitudinal 
waves. Transversal waves should be described with an even and bounded potential. 

I I 
Figure 1. Typical interaction potential. 
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In particular the potential is assumed to have the following properties: 
(i) V ( r )  is at least once continuously differentiable ( r  > -do) ;  

(ii) the derivative V'( r )  is monotonically increasing (decreasing) if - do< r < 
Ao ( r  > Ao); 

(iii) V ( r )  is three times continuously differentiable in a neighbourhood of r = A0 

and V"'(AO) # 0. 
We  shall outline now the essentials of the methods and results. To describe a 

periodic permanent wave we shall introduce a function s(6 )  with period 2i7, such that 
os(wt - n k )  gives the velocity of the n th particle in the chain. The  constants w and k 
are respectively the circular frequency and the wavenumber. The  function s will be 
considered as element of a real Hilbert space of square integrable functions. The  
inner product being given by 

the time average of the kinetic energy per particle in the wave equals 

iw2(s,  s). (1.2) 

Further we define in terms of the potential V for a given wavenumber k a functional 
V(s)  on  a domain in 2, such that V(s)  equals the time average of the potential energy 
per particle. The  equation of motion for s turns out to have the form 

w z  grad (s, s) = grad V ( s ) ,  (1.3) 

i.e. a solution realises an extremum of the potential energy for a constant kinetic 
energy. 

Due  to the singularity in V it is not possible to define V on all of 2'. There  exists, 
however, a positive number Ro such that V is defined on the open ball in 2' around 
the origin with radius Ro. By means of standard theorems it will be shown that for any 
given real parameter R in the range 0 S R < Ro there exists at least one  solution pair 
{ w 2 ( R ) ,  s(R)}  with (s, s) = R 2 .  Note that both w 2  and s depend on the a priori given 
wavenumber k. 

This solution pair will be investigated in more detail for the case that R has a value 
close to Ro. This investigation is based upon the fact that there exists an element, say 
so, in 2 with norm RO such that V is singular in so, i.e. V(s)  is unbounded in any small 
surrounding of so. Because the solution of (1.3) realises the maximum of V ( s )  on the 
sphere in 2 with radius R, this solution is close to SO if R is close to Ro. The velocity 
of the wave, which equals w / k ,  tends to  infinity if R tends to  Ro, and the same holds 
for the time average of the energy per particle. The  solution s in this case represents 
an infinite train of equidistant compressional pulses running through the chain with 
'infinite' velocity. The  distance between the pulses equals 2 v / k  and their width 
equals approximately the equilibrium distance between two neighbouring particles. 

2. The equation for periodic permanent waves 

The equations of motion are 

f,, = - V'(r , , -r , , - l )+ V'(r,,+l-r,,).  
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A periodic permanent wave can be written as 

r , ( t )  = r(wt - n k ) +  n A, (2.2) 

where r is a periodic function with zero average and A is a parameter that equals the 
expansion of the chain per particle. The period of r being chosen as 257, w and k are 
respectively the circular frequency and the wavenumber of the wave. Substitution of 
(2.2) into (2.1) gives, if wt - nk is replaced by 8, 

w2($)’r (8)=  - V ’ ( r ( 0 ) - r ( 8  + k ) + A ) +  V’( -  r ( 8 ) +  r(O - k ) +  A). (2.3) 

To give this equation a well suited form we introduce the linear transformation B that 
transforms a period function g ( 8 )  according to 

B g ( 0 ) = g ( B - ; k ) - g ( B + $ k ) .  (2.4) 

With the aid thereof we write (2.3) as 

We proceed with the definition of a linear transformation A 
e + $ k  

A g ( 8 ) =  - g ( 7 )  d7. 
e - t k  

One easily verifies 

with the aid of which we obtain instead of (2.3‘) 

d 
d e  
- [w2s(8)-  A V ‘ ( A s ( B ) +  A) ]  = 0, 

d 
@)=- r (8 ) .  

d8 

(2.3’) 

The procedure is now as follows: for a given value of k and A one finds w 2  and s 
such that (2.6) holds. Because of the periodicity of r the function s should have zero 
average and for the same reason we choose k within the interval [ - r, + T I .  Because 
change of sign of k corresponds with change of direction of the corresponding wave, 
we restrict k to the range 

Q < k s r .  (2.7) 

Obviously we choose A > -do .  

3. Mathematical preliminaries 

Consider the set X of real functions defined on the real axis 

%’=( flf(e>=f(-e>;f(0+257)=f(B); -77 f(7)dT = O ;  J-:f2(T)dT<m]. (3.1) 
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With inner product 

we may view X as a Hilbert space with orthonormal basis 

4,, = Jz cos ne,  n = 1 , 2 , .  . . . ( 3 . 3 )  

Now we turn to the linear transformation A defined in (2.5). Define the element 
hk E 

with norm 

With (2 .5 )  and with the third property in ( 3 . 1 )  one  easily verifies 
f r =  

where hke(7 )  = hk(7 + e).  
The  following two properties of A are basic for this paper: 
(i) Ag(8 )  is a continuous function of 8 and 

suplAg(8)l 2rl/hk/l / / g / / ;  
9 

( 3 . 6 ~ )  

( 3 . 6 b )  

( 3 . 7 )  

(ii) A is a completely continuous and self-adjoint linear transformation that maps 

The  first property follows with Schwarz' inequality and ( 3 . 6 b ) .  To prove the 
second, we first state that A is a bounded linear transformation that maps Y t  into 2, 
which follows from ( 3 . 6 )  and (i). Then we notice that any element q5,, of the basis (3 .3 )  
is eigenvector of A 

X into Z. 

2 nk 
n 2  Ad,, = --sin - 4,,. 

The  properties of the spectrum of A then immediately imply (ii) (cf Helmberg 1969, 
9: 28) .  

4. Existence of solutions 

First we write ( 2 . 6 )  in a form that is suited to apply variational methods, for which we 
refer to Vainberg (1964)  (a well-suited reference is also Temme 1976, chapter X). 

t The symbol ( , ) denotes here the inner product in the space defined by (3.1) without the requirement 
that the functions are even. 
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Define the positive number Ro 

From (3.7) it then follows if llgll< RO 

inf(Ag(0) + A )  > A -sup IAg(8)/ > - do. 
8 e 

Now define the functional on the open ball BRo in 2 

% " ~ ( s )  = i n  V(As(7) + A)  dT, llsll< Ro. 27r 

(4.1) 

(4.2) 

(4.3) 

The domain of definition is chosen to be B R ~  in order to guarantee that the argument 
of V in the integrand is larger than -do  (cf (4.2)). For the gradient of 'cr we have by 
definition (Vainberg 1964, 8 5 )  

1 

r-O E 
lim -1 VA(s + Eh) - 'crA(s)/ = (grad 'crA(s), h )  

One easily verifies (cf the third property in (3.1)) 

grad ?;(s)= A( V'(As + A ) - L  V'(As(7)ch)d.r)  
27r -n 

(4.4) 

(4.5) 

The second term on the right is necessary because the gradient should be an element 
of 2. As far as solhtions s E X are considered, equation ( 2 . 6 )  can now be written as 

w2s  = grad VA(s). (4.6) 

The basic ingredients for the existence proof for solutions to this equation are given in 
the following lemmas. 

Lemma 4.1. The functional V A  is weakly continuous on any closed ball BR, R < Ro. 

Proof. From inequality (3.7) we infer that the set 
t e l l  

v ' ( A ~  + A)-i  J V'(As(7)+ A )  d7, / Is\\  < R, (4.7) 
27r -= 

is bounded. Compactness of A then implies (cf (4.5)) that grad VA maps any bounded 
subset of BR into a compact set, and so grad VA is a compact operator by definition. A 
compact gradient corresponds with a weakly continuous functional (Vainberg 1964, 
theorem 8.2). 

Lemma 4.2 
(i) Any extremum of VA within the open ball B R ~  is necessarily situated at s = 0. 

(ii) Zero is a minimum point if A < A0 and i t  is a maximum point if A > Ao. 
(iii) If A = Ao, the functional VA has no extremum within the ball BRo. 

Pro0 f 
(i) If VA has an extremum in BR,,, say at sl, then it  necessarily holds that grad 

' c r ~ ( s ~ )  = 0 (Vainberg 1973, theorem 9.1. l),  which implies (cf (4.5)) s1 = 0.  
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(ii) Below we shall show that V ,  is convex in a neighbourhood of s = 0 if A < Ao, 
or equivalently that grad VA is monotone. The proof then follows from 
Vainberg (1973, theorem 9.1.2). If A > A o  the same argument can be applied 
on the functional - 7,. To show that grad V ,  is monotone we write (cf (4.5)) 

By assumption (0 lr property (ii)) there is for any A <  A. a S > 0 such that V ( x )  
is monotonically increasing if A - 6 < x < A + S. Because of (3 .7)  there is for 
a n y S > O a n E > O s u c h t h a t  

supIAs(8)l < S 

Consequently both factors in the integrand in (4.8) have the same sign for any 
-T 8 G T if I J S ~ , ~ / (  < E so that the integrand is non-negative. By definition it 
follows that grad VA is (in fact strictly) monotone in B,. 

(iii) If we write down the Taylor series of VAO(xh) around x = 0 ( h  is a fixed 
element in X) then we see immediately that the statement follows from 
property (iii) in 3: 1. 

Lemma 4.3 
(i) If A < A” (A > A”) the functional V ,  achieves its supremum (infimum) in the 

(ii) If A = A. the functional YA achieves both its infimum and its supremum on S R .  
closed ball BR, R < Ro, on the boundary SR.  

Proof. Because X is a Hilbert space, the closed ball B R  is both weakly closed and 
weakly compact. Further VA is weakly continuous (lemma 4.1). Consequently the 
generalised theorem of Weierstrass applies (Vainberg 1964, theorem 13.2). It follows 
that VA achieves both its infimum and its supremum on the closed ball BR. Appli- 
cation of lemma 4.2 completes the proof. 

Now the main result of the present paper can be formulated and proved. 

Theorem 4.4. For any A < A. ( A >  Ao) and any positive R ’ <  Ro, equation (4.6) has a 
solution pair { w 2 ,  S} with llS(l= R and w 2 > 0  ( w 2 < O ) .  The functional V A  achieves its 
supremum on the closed ball B R  in S. 

Proof. First consider the case A < Ao. Let S denote an element on SR at which VA 
achieves its supremum according to lemma 4.3(i). According to Lusternik’s theorem 
(Vainberg 1964, theorems 12,1,2), there is a real number p, such that (4.6) holds in 
that extrema1 point with w 2  = p. This number is surely non-zero, because p = 0 
implies grad V,(S)= 0 and so S =  0, which contradicts /(S(I= R .  Further we have 
V,(t)> VA(s’) where s’ is any interior point of BR. Assume p < 0. Then grad V,(S) is 
directed inwards, and so there is an interior point of BR, say s”, with V,(s”)> V,(S). 
This contradicts the first inequality. We conclude to p > 0. If A > A,, the same type of 
argument applies. 
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Note that as a consequence of the inequality 

A+SUP IAs(O)l< A+2~l lhk/ /Ro= do+ 2A, llsll< Ro, (4.9) 
e 

the values of the potential V(r) for r > do + 2A do not influence either the functional 
VA or the solutions of (4.6). 

The solution to (4.6) guaranteed by the above theorem is not unique. Although 
one might expect that for almost all values of R there is only one s on S R  for which TA 
has an absolute maximum, this is not the only solution to (4.6). Any s for which VA is 
stationary with respect to the surface SR satisfies. 

Let us consider as an example the case of a harmonic chain: V(r) = &r2. Equation 
(4.6) then reads w 2 s  = bA2s. This equation has an infinity of solution pairs (cf (3.8)): 

{O?(R), s i ( ~ ) } = { b  4i-2sin2+ik, R~JZCOS ie>. 

One easily verifies that the maximum of VA(s ) ,  which is given by 

VA(s)  = (As ( r )+  A)2 d7, 
4rr -= 

(4.10) 

is realised by the solution with i = 1. In the present anharmonic case we expect the 
analogous situation, i.e. the existence of a set of solutions {U?(&) ,  s i (Ri ) } .  For small 
values of the parameters Ri these solutions should tend to the harmonic solutions. A 
detailed study of the complete set of solutions to (4.6), however, is beyond the scope 
of this paper. 

In the case that A > A o ,  w 2  is negative so that w is imaginary. This indicates 
unstable behaviour, which can be seen in the following way. The parameter A gives 
the expansion of the chain per particle. We can incorporate this in the equations of 
motion (2.1) by introducing a new interaction potential 

pi(;,, V ( i n - i n - l + A ) -  V’(A)(i,-i,-l), (4.11) 

where i, is the coordinate of the nth particle with respect to the new equilibrium 
position: it holds that i,, = r, -nA. The linear term in the potential is added to 
guarantee that ? has an extremum if i,, - in-l = 0. One easily sees that this extremum 
is a minimum if A < Ao. It is a maximum, however, if A > Ao. This implies that the zero 
solution of the equations of motion for the stretched chain 

;,= - Q’( i , - - i , , - l )+ V’( i ,+ l - in )  (4.12) 

is unstable if A > Ao. From now on we restrict the range of A by 

-do < A < Po. (4.13) 

5. Theenergy 

With the aid of an assumption about the continuity of a solution w 2 ( R ) ,  s ( R )  with 
respect to R, the energy of the wave will be written in terms of the square of the 
frequency: w z ( R ) .  The motion of the nth particle of the chain is described by 

d d 
- r , , ( t ) = - - ( o f - n n k ) = o s ( w t - n k ) ,  dt dt (5.1) 
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rn(t)-rn-,0) 

=r(wt-nk)-r(wt-nk+k)+A 

= (Br)(wt-nk + i k ) + A = ( A s ) ( w t - n k + i k ) + A .  (5 .2 )  

For the time average of the kinetic and the potential energy per particle we then have 
respectively for any solution of (4.6) 

-f.=%/ -(-r(t))'dt=--/ 1 d w 2  1 = s'(T)dT, 
2~ -w/w2 dt 2 277 

( 5 . 3 ~ )  

w / w  

Q = -  J V(rn(T)-rn-l(T)+A)dT=L J w  v(As(T)+A)dT = ?fb(s). (5.36) 
2T - n / w  2T -n 

For any arbitrary s, the functional Vb(s) is given by the expression (cf Vainberg 1964, 
s: 2) 

(5.4) 

where the path of integration L connects 0 and s and is represented by a suitable 
abstract function ;(a). For (5.4) to be valid it is sufficient that f(a) is a continuous 
function of cr and that it is of bounded variation. Now assume that the solution S(R)  
given in theorem 4.4 satisfies these properties. Making use of (4.6) we then find 

Y,@s(R)) = ?fA(O)+ w*(R ' ) (S (R ' ) ,  dS(R')). jOR ( 5 . 5 )  

Finally we conclude with (5.3) that the total energy of the solution given in theorem 
4.4 is given by 

-f .(R)+ Q ( R ) =  f o 2 ( R ) R 2 +  w'(R')R' dR '+  V(A). (5.6) T 
The validity of (5.6) depends on the assumption concerning S(R). It remains valid if 
there are discontinuities. Consider the case of one discontinuity, say at R". Then we 
have the equalities 

R " 

- VA(O)+ lim ?fA(S(R')) = Q w'(R')R' dR',  
R ' t R "  

? R  

( 5 . 7 ~ )  

- lim VA(5(R'))+ V~(S(R))= J w'(R')R'dR'. (5.76) 
R ' J R "  R" 

If we add both equations, the limits cancel because they both equal the maximal value 
of ?fa on the spheres SR", and again we arrive at (5.5). 

6. The solution with high energy 

In this section we shall discuss the shape of the solution and bounds for the kinetic and 
the potential energy per particle if R tends to Ro. The functional ?f is defined on any 
ball in 2 with radius (cf 5 4) R < Ro. On the sphere SR,VA is defined everywhere 
where the inequality in (3.7) holds. From (3.66) it follows that the equality is satisfied 
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only if g = cohk or g = Cohk,,, where C O  is a constant, so we conclude that V A  is defined 
on SRo apart from singularities at 

This fact forms the basis of the following theorem. 

Theorem 6.1. Let the singularity of V ( r )  at r = - d o  be non-integrable, i.e. 

V ( r )  dr  -+ - 03 if a + O .  

Then for any E > 0 there is a So > 0 such that equation (4.6) for any positive S 
a solution satisfying 

lo- do(' -a ) 

So has 

/ / S I /  = Ro(1 - 61, IIs -sol1 ER", (6.2) 

and 

Proof. Choose E > 0. There is a constant M such that V S  M for any s satisfying 

IIsII Ro, 11s -so/\ 3 ER". (6.4) 

From a straightforward calculation of VA((l - S)so) the existence of a So < E such that 
VA(( 1 - 8)s") > M for 0 < S < So follows immediately. Consequently V assumes its 
extremum on S R o ( l - ~ )  within the ER" neighbourhood of so. This proves (6.2). With 
the aid of (3.7) and (4.1), equation (6.3) follows immediately. 

Equation (6.2) in this theorem shows that the velocity of any particle (cf (5.1)) 
during the wave motion is approximately (in the norm of 2) given by u s o  if R is close 
to Ro. The relative distance between the particles, however, is approximated uni- 
formly in the argument 6 by Aso+ A (cf (5.2), (6.3)). The latter result can be visualised 
(cf figure 2) in an easy way. To do  this we define the functions (see figure 2) g+,-(6) 

Figure 2. The functions Aso(B), h + , - ( B )  and g+, - (B)  
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and h, , - (@)  as follows: they equal zero apart from 

g+(@)=Aso(@)+E(do+A) if Aso(O)+ E ( &  + A )  3 0 ,  
h+(@)=Aso(@)-E(do+A) if Aso(8)- €(do+ A ) z  0 ,  (6.5) 

g - ( @ ) =  Aso(0)- €(do+ A )  if 0 > Aso(0)- €(do+ A)> -(do+ A)(l  - S ) ,  

g - ( e )  = -(do+ A ) ( I  - 8) if Aso(@)-  €(do+ A ) S  -(do+ A)(l - S ) ,  (6.6) 
h - ( @ ) = A s o ( @ ) +  €(do+ A )  if Aso(0)+ € ( d o  + A)< 0, 

where Aso is given by (cf (6.1) and (3.4)) 

One easily concludes that the actual value of A s ( @ )  is lying in the area enclosed by the 
non-zero parts of h+,- and g + , -  in figure 2 .  

To prepare the ground for the calculation of bounds for the kinetic energy we 
define 

I+,- = - As(r) [V’(As(r )+A)-  V’(A)] dr, (6.8) 
7 i + , -  

where i+,- is the interval of [ - n, 01 where A s ( @ )  is positive or negative respectively. 
Taking the inner product of both sides of (4.6) and s one finds, making use of the fact 
that s has zero average, 

W 2 ~ 2  = I++ I - .  (6.9) 

Careful inspection of figure 2 leads to the following bounds for I - :  

0 0 

h-(r)[V’(h-(T)+A)- V’(A)] d r S 1 - S -  5 g-(r)[  V’(g..(r)+A)- V’(A)] dr .  
7 l  - w  7 l  - 5 7  

(6.10) 

Calculation of these bounds is straightforward. The results are 

(E+S)(~--G)V‘(CW +A)JZZO_(~,+A)(~-~)  

+ i(l- V‘(A)+ (6.11) 

(6.12) 

where S, represents the surface of the shaded area in figure 3 .  In an analogous way 
bounds can be derived for I+. These, however, are bounded for small E and 6, and 
their detailed form is less relevant. 

We can formulate now the following theorem: 
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I I 

Figure3. V(-x+A)against  x , x , = ( l - c r ) ( d , , + A ) .  

Theorem 6.2. Let the singularity of V ( r )  at r = -do be of degree m > 1, i.e. 

V ( r )  = O(r  + do)-" i f  rJ -do, 

then there exists for any E > 0 a So > 0 and there exist positive constants Mi(k,  A) such 
that for the time average of the kinetic energy per particle of the wave corresponding 
with a solution given in theorem 6.1, it holds that 

M1+M2€-" < ~ ( R o ( l - S ) ) < M 3 + M 4 € S - m - 1 + M 5 S - m ,  O<S<SO. (6.13) 

Further there exist constants Ni(k, A )  such that for the time average of potential 
energy it holds that 

N1 +Nz€-"+'< Q(Ro(1-S))<N3+N4&-" +N58-"+*, 0 < S < So .  (6.14) 

Proof. The first part of the theorem is an immediate consequence of the bounds 
discussed above for I+ and I-  and of 

F ( R ) = $ w ~ R ~ = : ( I + + Z - ) .  

The second part follows from the same type of argument. Define 

H+,- = 1 J V ( A s ( B ) + A )  de, (6.15) 

where i+,- is the interval of [ -T ,  01 where As(B)+A is positive or negative respec- 
tively. H ,  is bounded for small E and S .  For H- the same type of bounds can be 
formulated as was done for I -  in (6.10). The essential difference is that the singularity 
in the integrands in (6.10) is of degree m + 1 because of the occurrence of V', whereas 
the singularity in the integrands occurring in the bounds for H- is of degree m. This 
leads immediately to (6.14). 

i+,- 

We conclude with a few remarks. 
(i) Because E can be chosen arbitrarily small and because of the condition m > 1 

in the theorem, the lower bounds in (6.13, 6.14) show that both the kinetic 
and the potential energy per particle are unbounded for R in the neighbour- 
hood of Ro. 
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(ii) 

(iii) 

(iv) 

From (6.13) one derives the same type of bounds for the square of the phase 
velocity 

c 2  = w 2 / k 2 =  2 T ( R ) / ( R 2 k 2 ) .  

Consequently the velocity of the wave is also unbounded if R is in the 
neighbourhood of Ro. 
If the singularity of F, and so of w 2 ,  is of degree (Y : i.e. if is approximated by 
a constant times ( R - R o ) - " ,  then the upper bound in (6.13) shows that 
a s m + 1. If one knows how 60 depends on E ,  one can say more about a. 
The parameter R does not have an immediate physical meaning. Note, 
however, that the potential energy per particle V ( R )  varies from V(A) to 
infini if R varies from zero to Ro.  In fact, V ( R )  = 7r,(S(R)) is a monotonically 
increasing, unbounded and continuous function of R .  This follows from the 
continuity of the functional VA(s) and from the second statement of theorem 
4.4. Consequently there is a one-to-one correspondence between R in the 
range [0, Ro[  and V in the range [ V(A), CO[ .  

7. Concluding remarks 

To conclude we apply the above results to a finite chain of N particles. We describe 
the motion of this system with the aid of the infinite chain with periodic boundary 
conditions. In this way the system is interpreted as a closed circular chain of N 
particles. 

Now consider a solution of (4.6) with k = 2.ir/N. Let us assume that the distance 
between two neighbouring particles in the chain equals unity if the particles are at rest 
and if h = 0. The actual distance between two neighbouring particles is then given by 

p , ( t )  = 1 + r,, ( t ) -  r , - , ( t )  = (As) (wt  - nk + ; k ) +  1 + A .  (7.1) 

Obviously this quantity is periodic in n with period N .  If the parameter R is close to 
Ro, the function As(8) is close to Aso(6) for all values of the argument 8. Making use 
of (6.7) we then find at a particular time t = ;k/w approximately 

[ 1 -do, n = 1, 

(7.2) 

This represents a sharp compressional pulse. This pulse travels through the closed 
chain of N particles with velocity c ( R ) =  w ( R ) / k ,  which tends to infinity if R tends to 
Ro (cf theorem 6.2 and following). 

In this way one easily sees that a solution of (4.6) with k = i ( 2 n / N )  represents a set 
of i equidistant pulses running with constant velocity through the closed circular chain 
of N particles. The N solutions for k = f. i ( 2 n / N ) ,  i = 1 ,  . . . , N / 2  represent the 
non-linear analogues of the normal modes for the linear chain. 

We should realise, however, that stability for small perturbations is a necessary 
condition for such pulses to exist in a real physical system. This property, however, 
should be proved. Another important question is the existence of a solution 
representing two or more pulses with different velocity. If the pulses still exist after 
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interaction, they may be called solitons. Both properties are essential for the physical 
interpretation of the solutions found in this paper and they are the subject of further 
study. 
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